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Abstract

Background: Differentiated thyroid cancer has been treated with radioiodine for
almost 80 years, although controversial questions regarding radiation-related risks
and the optimisation of treatment regimens remain unresolved. Multi-centre clinical
studies are required to ensure recruitment of sufficient patients to achieve the statistical
significance required to address these issues. Optimisation and standardisation of data
acquisition and processing are necessary to ensure quantitative imaging and patient-
specific dosimetry.

Material and methods: A European network of centres able to perform standardised
quantitative imaging of radioiodine therapy of thyroid cancer patients was set-up within
the EU consortium MEDIRAD. This network will support a concurrent series of clinical
studies to determine accurately absorbed doses for thyroid cancer patients treated with
radioiodine. Five SPECT(/CT) systems at four European centres were characterised with
respect to their system volume sensitivity, recovery coefficients and dead time.

Results: System volume sensitivities of the Siemens Intevo systems (crystal thickness 3/8″)
ranged from 62.1 to 73.5 cps/MBq. For a GE Discovery 670 (crystal thickness 5/8″) a
system volume sensitivity of 92.2 cps/MBq was measured. Recovery coefficients
measured on three Siemens Intevo systems show good agreement. For volumes larger
than 10ml, the maximum observed difference between recovery coefficients was found
to be ± 0.02. Furthermore, dead-time coefficients measured on two Siemens Intevo
systems agreed well with previously published dead-time values.

Conclusions: Results presented here provide additional support for the proposal to use
global calibration parameters for cameras of the same make and model. This could
potentially facilitate the extension of the imaging network for further dosimetry-based
studies.
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Background
Radioiodine ([131I]NaI) has been used to treat thyroid cancer following partial or total

thyroidectomy for nearly 80 years. Nevertheless, treatment regimens remain subject to

controversy and administered activities can vary widely, in part due to a lack of evi-

dence regarding potential risks from treatment. A consensus paper [1] developed by ex-

perts from the American Thyroid Association (ATA) [2], the European Association of

Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging

(SNMMI) and the European Thyroid Association (ETA) has established several princi-

ples regarding treatment and has highlighted areas in need of investigation. These

‘Martinique principles’ include the need to determine the optimal prescribed activity of

radioiodine for adjuvant treatment and for patients at low risk. Furthermore, they rec-

ommend that major gaps in knowledge concerning the optimal use of radioiodine

should be addressed by prospective studies.

A review by Hackshaw et al. [3] concluded that it is not possible to determine from

the literature whether ablation success rates are higher with higher administered activ-

ities. Several authors have hypothesised that the ablation success rate is dependent on

the absorbed dose delivered to residual thyroid tissue rather than on the activity admin-

istered [4–7]. A number of studies have shown that a large range of absorbed doses is

observed in patients when empirical activities are used [4–12]. Previous studies that

have investigated the relationship between the absorbed dose to the thyroid remnant

and the treatment success rate have not been performed in a multi-centre setting, and

treatment based on a dosimetry approach has, therefore, not been widely adopted.

Multi-centre prospective clinical studies are ultimately necessary to resolve the contro-

versies raised in the consensus paper [1] by the ATA, EANM, SNMMI and ETA.

Clinical studies performed in a multi-centre setting enable a wider input into the trial

design and data analysis [13]. A summary of the physics aspects of setting up a multi-

centre clinical trial involving imaging-based dosimetry has been provided in [14].

Multi-centre clinical studies involving a dosimetry component must be carefully

planned and a consistent approach to quality assurance should be implemented to

allow for the collation of results from the individual centres. Image data acquisition

and processing can only be standardised to a certain level due to local differences in lo-

gistics, available equipment and constraints in ethics approvals and regulations.

Quantitative imaging is becoming more widely adopted [15] and will in future be part

of many multi-centre clinical studies in nuclear medicine. Guidelines for quantitative

imaging of 131I have been provided by the Committee on Medical Internal Radiation

Dose (MIRD) in pamphlet 24 [16]. The EANM has issued guidelines on internal dosim-

etry for 131I[mIBG] treatment of neuroendocrine tumours [17].

Multi-centre studies with a dosimetry component require the set-up of a network of

cameras able to perform quantitative imaging [14]. Zimmerman et al. [18] set up a

multi-national, multi-centre phantom study to evaluate accuracy and reproducibility of

SPECT image quantification with 133Ba as a surrogate for 131I. Wevrett et al. [19]

assessed the feasibility of using an international inter-comparison exercise for 177Lu as

a means to ensure consistency between clinical sites. A study in the Netherlands [20]

reported on the variability in 177Lu SPECT quantification between different state-of-

the-art SPECT/CT systems. Peters et al. [21] investigated the quantitative accuracy and

inter-system variability of various SPECT/CT systems with phantom measurements
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using 99mTc in a multi-vendor and multi-centre setting. Dickson et al. [22] proposed a

framework for DaTSCAN ([123I]FP-CIT) imaging standardisation. An example of a

multi-centre clinical trial involving dosimetry for [123I]NaI and [131I]NaI is SEL-I-

METRY [23], a phase II clinical trial using quantitative SPECT imaging to investigate

the potential of selumetinib to resensitise advanced iodine refractory differentiated thy-

roid cancer (DTC) to radioiodine. As part of SELIMETRY, a quantitative SPECT im-

aging network was set up in the UK [24].

MEDIRAD is a European Horizon 2020 funded project investigating the implications

of medical low dose radiation exposure [25]. The overall objectives of MEDIRAD Work

Package 3 (WP3) are to develop and implement the tools necessary to, for the first time

in a multi-centre setting, investigate the range of absorbed doses delivered to healthy

organs in patients undergoing thyroid ablation and to establish a threshold absorbed

dose required for a successful ablation. Absorbed dose estimates to the thyroid remnant

will be used to investigate the relationship between the radiation dose to the remnant

tissue and treatment success. A sub-task of WP3 is to assess the variation between pa-

tient biokinetics, the success of ablation and the occurrence of short to mid-term toxic-

ities. This is a concurrent series of non-randomised, non-blinded, prospective

observational studies aiming to recruit 100 patients across four centres (Royal Marsden

Hospital, Universitätsklinikum Marburg, Universitätsklinikum Würzburg and Institute

Universitaire du Cancer de Toulouse Oncopole). A series of SPECT/(CT) (hereafter re-

ferred to as SPECT(/CT)) and whole-body scans is performed following radioiodine

therapy from 6 to 168 h post-administration to perform centralised dosimetry calcula-

tions for thyroid remnants, healthy organs and metastases. Whole-body (WB) retention

measurements and, for a sub-group of patients, blood samples are collected to enable

the calculation of WB and blood absorbed doses. Patients are followed up at regular

clinical visits to assess the success of ablation and discover short to mid-term toxicity.

The aim of this work was to develop the required methodologies and perform the

gamma camera performance assessments necessary for the set-up of a European im-

aging network for quantitative [131I]NaI imaging to support a concurrent series of

dosimetry-based clinical studies for radioiodine therapy of thyroid cancer patients. A

degree of flexibility was required to enable the set-up of these centres due to differences

in local logistics and in the interpretation of radiation protection legislation in the four

participating centres located in the three countries. Local radiation protection restric-

tions prevented the use of large amounts of liquid [131I]NaI to determine dead-time of

the systems.

Methods
Setting up a network of gamma cameras for quantitative SPECT imaging

The four centres involved in the MEDIRAD study were equipped with a total of 5

SPECT(/CT) systems which are summarised in Table 1. All SPECT(/CT) systems

were calibrated for quantitative high activity radioiodine imaging by performing

pre-study site visits involving measurements to determine system volume sensitiv-

ity, recovery coefficients and dead-time characteristics for each SPECT(/CT) system

used for the study.
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The system volume sensitivity characterises the system’s response to a uniform con-

centration of activity. SPECT recovery coefficients, defined as the ratio between the ob-

served activity concentration in tomographic imaging and the true activity

concentration [26], were determined to correct for partial volume and resolution effects

on the activity concentration measured in the reconstructed SPECT images. Dead-time

factors, defined as the ratio between the true count-rate and the observed count-rate of

a detector, are used to correct the acquired image counts for counts lost due to de-

tector paralysis when imaging high activities of 131I.

Prior to the site set-up measurements, it was ensured that each centre had performed

the following routine quality control tests [27] according to local limits; photopeak pos-

ition, 131I and/or 99mTc intrinsic uniformity, centre of rotation for high-energy collima-

tors used in the study, SPECT/CT system alignment, extrinsic high-energy collimator

flood, QC of weighing scales used in these measurements and QC of dose calibrators

used in these measurements.

Activities used for the phantom measurements were measured with dose calibrators

that were traceable to a national standard, had been calibrated using an accredited la-

boratory for calibration in the respective countries or was calibrated to a local standard

(e.g. a calibrated high purity germanium detector).

Whole-body and SPECT acquisition and reconstruction protocols

Standardised SPECT acquisition and reconstruction protocols were used on all systems

involved in the study for the site set-up measurements and all patient measurements.

Triple-energy scatter correction was used on all systems. CT attenuation correction

was performed using the local standard low-dose CT protocol. As no hybrid SPECT/

CT system was available for one centre, the Chang attenuation correction [28] was ap-

plied for this centre. 131I acquisition and reconstruction parameters are summarised in

Tables 2 and 3. All SPECT/CT reconstructions included resolution recovery.

System volume sensitivity measurement

A cylindrical or body-shaped phantom with a volume greater than 6 l was used for all

system volume sensitivity measurements based on local availability of phantoms. The

volume of each phantom was accurately determined by measuring the weight of water

needed to completely fill the phantom. In total, 40 ± 2MBq of liquid [131I]NaI, 1 g of

potassium iodine and 1 g of sodium thiosulphate were added to the phantom. The ac-

tivity of 40MBq was chosen to minimise the influence of dead-time of the SPECT sys-

tems on the measurements. The activity was measured accurately using a radionuclide

Table 1 Summary of the imaging systems used for the MEDIRAD clinical study

System Centre Crystal thickness Reconstruction software* Attenuation correction**

Siemens Symbia S Centre A 3/8″ Flash 3D Chang

Siemens Intevo (1) Centre B 3/8″ Flash 3D CT

Siemens Intevo (2) Centre B 3/8″ Flash 3D CT

Siemens Intevo Bold Centre C 3/8″ Flash 3D CT

GE Discovery 670 Centre D 5/8″ Volumetrix MI CT

*Vendor-specific reconstruction software/algorithm
**Attenuation correction method used for present study
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calibrator. An acquisition of 100 kilo counts (kcounts) per SPECT projection was per-

formed using the parameters in Table 2 and the image was reconstructed locally at

each centre using the SPECT reconstruction parameters listed in Table 3.

The system volume sensitivity Qvol in counts-per-second per MBq (cps/MBq) was ob-

tained from placing a 15 cm diameter volume-of-interest (VOI) in the centre of the re-

constructed SPECT image of the phantom and was defined as:

Qvol ¼
CVOI

amid
conc∙VVOI ∙

#P
2
∙Ptime

ð1Þ

where CVOI is the number of counts in the 15 cm VOI, amid
conc is the activity concentra-

tion in the phantom decay corrected to the mid-point of the scan in MBq/ml, VVOI is

the volume of the 15 cm VOI in ml, #P is the number of projections, and Ptime is the

time per projection in seconds. The division of #P by a factor of 2 originates from the 2

detectors that were available for all SPECT(/CT) systems.

Uncertainty analysis was performed following recent EANM guidance [29]. Uncer-

tainty in Qvol, u(Qvol), was estimated as:

u Qvolð Þ
Qvol

¼ u amid
conc

� �
amid
conc

ð2Þ

CVOI, VVOI, #P, Ptime were assumed to have no associated measurement uncertainty.

Uncertainty of amid
conc, uðamid

concÞ, was calculated as:

Table 2 Acquisition parameters used for 131I imaging as part of the MEDIRAD WP3 study

Parameter 131I acquisition protocol

Collimator High Energy (HE)

Photopeak-energy window 364 keV ± 10%

Lower scatter-energy window 318 keV ± 3%

Higher scatter-energy window 413 keV ± 3%

WB planar-acquisition mode Continuous movement at 20 cm/min

SPECT(/CT) matrix 128 × 128

SPECT movement Body contour

Projections 2 × 30 (6° projection)

Time per projection Adjusted based on measured count-rate for patient acquisition

CT Standard low-dose protocol

Table 3 SPECT(/CT) reconstruction parameters used for 131I imaging as part of the MEDIRAD WP3
study

Parameter 131I reconstruction protocol

Reconstruction OSEM (4 iterations, 10 subsets)

Attenuation correction (AC) CTAC (one site: Chang with 0.11 cm−1 @ 364 keV)

Scatter correction Triple-energy window (TEW)

Post-reconstruction filtering None
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u amid
conc

� �
amid
conc

� �2

¼ u Amidð Þ
Amid

� �2

þ u Vphantom
� �
Vphantom

� �2

ð3Þ

where Amid is the activity in MBq measured on the dose calibrator decay corrected to

the mid-point of the scan and u(Amid) is the uncertainty in the dose calibrator measure-

ment. u(Amid) was taken to be the measurement uncertainty provided on the calibra-

tion certificates for the respective calibrators or was assumed to be ± 5% where the

measurement uncertainty was unknown. This is the acceptable calibration tolerance for

field instruments in the UK [30]. Vphantom is the phantom volume in millilitre. The un-

certainty in the phantom volume u(Vphantom) was estimated to be ± 5ml due to the po-

tential for small air bubbles in the filled phantom.

SPECT recovery coefficient determination

A cylindrical IEC head phantom (inner diameter 19.7 cm, inner height 18.3 cm) was

used for the recovery coefficient measurements. A custom-designed lid with six 3D-

printed sphere inserts was used with internal diameters of 1.0, 1.7, 2.8, 3.7, 5.0 and 6.5

cm (Fig. 1). Internal volumes of all spheres were obtained by measuring the weight dif-

ference of empty and filled spheres. The spheres were filled with a solution of water,

[131I]NaI, potassium iodide and sodium thiosulphate. The 131I activity concentration in

the spheres was specified to lie in the range of 0.5-0.6MBq/ml at the time of acquisi-

tion. This is the expected maximum activity concentration in salivary glands estimated

from published maximum uptake values by Liu et al. [31]. MEDIRAD is investigating

the implications of medical low dose radiation exposure and the salivary glands are one

of the organs-at-risk of particular interest in radioiodine therapy. The background com-

partment of the phantom was filled with water only. SPECT acquisitions of the phan-

tom with 60 s per view and the parameters detailed in Table 2 were performed and

reconstructed locally using the reconstruction parameters in Table 3.

Fig. 1 Schematic representation of the placement of the six spheres used for the recovery coefficient
determination in a cylindrical IEC head phantom
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Spherical VOIs matching the nominal dimensions of the spheres were drawn on the

CT. After interpolation of VOIs from CT to SPECT matrix size, the VOIs were copied

to the reconstructed SPECT image. For the centre with no access to a hybrid SPECT/

CT system, those VOIs were drawn on the reconstructed SPECT image. Recovery coef-

ficients Rsphere
c for each sphere were calculated as:

Rsphere
c ¼ Csphere

amid
conc∙V sphere∙

#P
2
∙Ptime

∙
1

Qvol
ð4Þ

Here, Csphere is the number of counts in a sphere, amid
conc is the activity concentration

in the same sphere decay-corrected to the mid-point of the scan in MBq/ml, Vsphere is

the volume of the sphere in millilitre, #P is the number of projections and Ptime is the

time per projection in seconds. Qvol is the system volume sensitivity of the respective

system. The division of #P by a factor of 2 originates from the 2 detectors that were

available for all SPECT(/CT) systems.

Recovery coefficients for each sphere Rsphere
c were plotted against sphere volume

Vsphere and a recovery curve fitted using gnuplot version 5.2.7. The fitted recovery curve

was defined as:

Rc Vð Þ ¼ Rplateau −
Rplateau

1þ V
β

� �γ ð5Þ

With V as the volume in millilitre, and β, γ and Rplateau are fit parameters. Parameter

error estimates were obtained from gnuplot version 5.2.7 as the asymptotic standard

errors.

To compare the recovery curves of different systems, the maximum observed abso-

lute difference in the fitted recovery factor ΔRmax
c for a given volume was calculated as:

ΔRmax
c ¼ Max Rc V ; System 1ð Þ − Rc V ; System 2ð Þj jð Þ ð6Þ

With Rc(V, System 1) and Rc(V, System 2) as the recovery factors of the two systems

to be compared for a given volume V.

Dead-time characterisation

Dead-time measurements were performed using a 3700MBq 131I capsule placed in a

cylindrical scatter phantom made from polymethyl methacrylate (PMMA) developed at

the Royal Marsden Hospital (Sutton, UK). The phantom had a diameter of 13 cm and a

height of 13 cm to represent a typical neck size, with a 2.5-cm-diameter hole in the

middle extending from the top of the phantom to the centre for inserting the 131I

capsule.

A series of static planar scans was acquired whilst the capsule was decaying. Mea-

surements were performed approximately every second day until the capsule had

decayed to 1 GBq and thereafter measurements were performed every 3-4 days. Each

acquisition encompassed a static planar scan of 100 kcounts for each detector head

with the capsule in the centre of the scatter phantom. Acquisition times per detector

head were extracted from the DICOM headers to calculate the observed count rate.

The phantom was placed on the patient bed at approximately 10 cm from the detector
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surface. Additionally, 10-min background acquisitions were performed with no source

in place to correct for background activity.

Measurements with capsule activities below 100MBq were assumed to be unaffected

by dead-time and were used to determine the relationship between true count-rate

Ċtrue and source activity level from a linear fit of background corrected count rates ver-

sus source activities.

Dead-time correction factors for each measurement were determined as:

DFðĊtrueÞ ¼ Ċtrue

Ċobserved
ð7Þ

Where Ċobserved is the background-corrected measured count-rate of the detector

head at each source activity level.

Dead-time τ was obtained from a fit using gnuplot version 5.2.7 of a non-paralysable

detector model:

DFðĊtrueÞ ¼ 1
1 − τ∙ĊobservedÞð ð8Þ

Parameter error estimates were obtained from gnuplot version 5.2.7 as the asymptotic

standard errors.

On two systems, Intevo 1 and Intevo 2, the methodology used here was validated

against the dead-time measurement methodology presented by Gregory et al. [24]. The

authors determined dead time by incrementally adding 131I to a Jaszczak phantom and

performing 100 kcounts static images for each activity level.

No dead-time measurements were performed on the GE Discovery 670 as at the re-

spective centre imaging will only be performed at imaging time points later than 48 h

after the radioiodine administration. It is assumed that the activity level at such late im-

aging time points is low enough to ignore dead-time effects.

Results
System volume sensitivity

The system volume sensitivity values for the five systems are presented in Table 4. The

system volume sensitivity value of the SPECT-only Siemens Symbia S was obtained

using the Chang attenuation correction. System volume sensitivity of the Intevo Bold

system was found to be approximately 18% higher compared to the two Intevo systems.

Table 4 System volume sensitivity values for the five systems used in the MEDIRAD WP3 study

System System volume sensitivity [cps/MBq]

Siemens Intevo (1) 63.0 ± 1.9

Siemens Intevo (2) 62.1 ± 1.9

Siemens Intevo Bold 73.5 ± 3.7

Siemens Symbia S* 55.6 ± 3.0

GE Discovery 670 92.2 ± 2.8

*Chang’s attenuation correction
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SPECT recovery coefficient

The recovery coefficients of the five systems are shown in Fig. 2 together with the re-

spective fits using Eq. (5) in gnuplot version 5.2.7. A good agreement is observed be-

tween measured recovery coefficients and fits. The obtained fit parameters are

summarised in Table 5.

The recovery curves for the Intevo Bold, Intevo 1 and Intevo 2 are similar whilst the

recovery curve of the Symbia S is lower. The maximum observed absolute differences

in the recovery curves, ΔRmax
c , for Intevo 1 and Intevo 2 were found to be 0.022 for a

volume of 12 ml. For volumes larger than 10 ml, the two systems Intevo 1 and Intevo

Bold have a similar ΔRmax
c of 0.018, indicating a good agreement between the curves.

Nevertheless, for volumes smaller than 10 ml, the recovery curves of Intevo 1 and

Intevo Bold vary by up to an ΔRmax
c of 0.103. Results for the Discovery 670 show that

the recovery curve is lower than that of Intevo Bold and Intevo 1/2.

Dead-time factor

In Fig. 3, dead-time factors for the four systems that were used for high-activity 131I im-

aging in MEDIRAD are plotted against the true count-rate of the system. The max-

imum activity imaged of approximately 3700MBq resulted in true count-rates of 115 ±

10 kilo counts-per-second (kcps) on the four systems. An activity of 1000MBq in the

field-of-view (FOV) was associated with true count rates of 30 ± 3 kcps.

Figure 4 shows the comparison between dead-time factors obtained using the method

proposed by Gregory et al. [24], which involves a series of acquisitions with increasing

activity in a large volume uniform phantom, and the method used in the present study.

An overall good agreement is found between the two methodologies on both systems

assessed. The maximum absolute difference in dead-time factors at true count rates of

up to approximately 65 kcps, corresponding to an activity of approximately 2700MBq,

was found to be ± 0.02. A fit of Eq. (8) to the dead time data of Intevo 1 measured

using the methodology proposed here and the methodology used by Gregory et al. [24]

Fig. 2 Measured recovery coefficients (in arbitrary units—a.u.) for the five systems assessed here and the
respective fits using Eq. (5)
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resulted in dead times of 1.3 ± 0.1 and 1.5 ± 0.1 μs, respectively. For Intevo 2, dead

times of 1.5 ± 0.1 and 1.4 ± 0.1 μs were obtained using the two methodologies,

respectively.

Discussion
The set-up of a quantitative imaging network, particularly involving centres in several

countries, requires a certain degree of flexibility. The results presented here are for the

set-up of the first European quantitative imaging network for radioiodine. Methodolo-

gies to set up a multi-national quantitative imaging network for radioiodine, which in-

cludes the assessment of system volume sensitivity, dead time and recovery coefficients

were in part defined by restrictions based on the local interpretation of radiation pro-

tection laws in different countries, which for example prevented the use of large quan-

tities of liquid radioiodine.

Due to the relatively low patient numbers in each centre, large imaging networks are

required for any multi-centre clinical study aiming to recruit large numbers of patients

in molecular radiotherapy. Results obtained here and by Gregory et al. [24] have pro-

vided evidence that dead-time factors are similar on gamma cameras from the same

make and model. Similarly, if reconstruction protocols are standardised across the cen-

tres involved in a multi-centre study, recovery curves appear to be similar enough for

Table 5 Fit parameters for the recovery curve fitted using Eq. (5)

System Recovery curve fit parameters

Rplateau β γ

Siemens Intevo (1) 0.74 ± 0.03 5.42 ± 0.77 0.82 ± 0.07

Siemens Intevo (2) 0.73 ± 0.02 4.75 ± 0.37 0.88 ± 0.04

Siemens Intevo Bold 0.72 ± 0.02 6.34 ± 0.48 1.15 ± 0.10

Siemens Symbia S 0.52 ± 0.05 11.95 ± 3.43 1.02 ± 0.23

GE Discovery 670 0.60 ± 0.03 10.75 ± 1.45 0.91 ± 0.07

Fig. 3 Dead-time factor (in arbitrary units—a.u.) of the four Siemens systems used for the clinical part of
the MEDIRAD study shown as a function of true count-rate of the system
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matched makes and models to warrant the use of global, model-specific calibration fac-

tors as proposed by Gregory et al. [24].

In the present study, recovery curves were found to be similar for all three included

Siemens SPECT/CT systems. The recovery curve of the SPECT only system is lower,

potentially due to the use of Chang’s attenuation correction instead of CT attenuation

correction. Differences between recovery curves of Siemens and GE systems assessed

here are likely due to differences in the used high energy collimators by the two manu-

facturers (for comparison of septal thickness and hole length see ref. [24]), the crystal

thickness of systems (3/8″ vs 5/8″) and the method of resolution recovery used in the

manufacturer’s reconstruction software. The thicker crystal of the GE system is ex-

pected to result in a worse intrinsic resolution [32].

The observed difference in system volume sensitivity between the Intevo Bold and

Intevo systems is a surprising result. Calculations, acquisition and reconstruction pa-

rameters were validated independently by two medical physicists. One possible explan-

ation would be a difference in the software versions on the cameras and discussions

with the manufacturer are ongoing. Further measurements on additional systems will

be required to investigate this difference.

Using global calibration factors when using standardised acquisition and reconstruc-

tion parameters could potentially allow for a reduction in the site set-up measurements

required before a centre can participate in a multi-centre clinical study. Acquisition

and reconstruction methods are currently not standardised across centres and other

studies involving molecular radiotherapy. Global calibration factors for system volume

sensitivity and recovery coefficients could be determined if acquisition and reconstruc-

tion protocols would be standardised for new studies.

Fig. 4 Comparison of the dead-time factors (in arbitrary units—a.u.) measured using the methodology by
Gregory et al. [24] and the MEDIRAD methodology. The corresponding fits using a non-paralysable detector
model (Eq. (8)) are shown as red and black lines, respectively
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When using global calibration factors, validation measurements or dosimetry audits

as required for external beam radiotherapy trials [33] will become more important.

Those measurements range from simple sensitivity measurements to semi- or full-

anthropomorphic phantoms [34–36] or testing of the full dosimetry chain [24]. In the

present study, reconstructions are performed locally at the participating centres, which

reduces the impact on the central dosimetry hub, but might increase site-dependent

biases.

Dead-time factors measured using the methodology presented here and the one

employed by Gregory et al. [24] showed good agreement within the associated uncer-

tainties, which allows for further flexibility in future clinical studies. The methodology

of Gregory et al. [24] allows for all dead-time measurements to be performed on a sin-

gle day whilst the decaying source technique with a capsule of radioiodine requires

measurements to be performed over several months. Nevertheless, the methodology

proposed by Gregory et al. potentially leads to higher staff doses due to increased hand-

ling times of the phantom in the process of adding activity to the phantom in a step-

by-step process. As multi-centre studies become more prevalent and involve centres in

more countries, flexible approaches to these measurements might be required.

A limitation of the study is the small number of SPECT(/CT) systems included in the

performance assessment. Two Siemens Intevo and one Siemens Intevo Bold SPECT/

CT could be directly compared.

Conclusions
The first European quantitative imaging network for high-activity radioiodine has been

set-up. The imaging network will determine, for the first time in a multi-centre setting,

the range of absorbed doses delivered to healthy organs in patients undergoing thyroid

ablation and aims to determine the threshold absorbed dose required for a successful

ablation. Results presented here for two Siemens Intevo and one Siemens Intevo Bold

provide additional support for the proposal to use global calibration parameters for

cameras of the same make and model. In time, we hope to find that this could simplify

the extension of the imaging network to other centres. There is an urgent need to

standardise the acquisition and reconstruction parameters for studies involving dosim-

etry in molecular radiotherapy.
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