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Gaussian graphical models are usually estimated from unreplicated data. The
data are, however, likely to comprise signal and noise. These two cannot be
deconvoluted from unreplicated data. Pragmatically, the noise is then ignored
in practice. We point out the consequences of this practice for the recon-
struction of the conditional independence graph of the signal. Replicated
data allow for the deconvolution of signal and noise and the reconstruction
of former’s conditional independence graph. Hereto we present a penalized
Expectation-Maximization algorithm. The penalty parameter is chosen to max-
imize the F-fold cross-validated log-likelihood. Sampling schemes of the folds
from replicated data are discussed. By simulation we investigate the effect of
replicates on the reconstruction of the signal’s conditional independence graph.
Moreover, we compare the proposed method to several obvious competitors.
In an application we use data from oncogenomic studies with replicates to
reconstruct the gene-gene interaction networks, operationalized as conditional
independence graphs. This yields a realistic portrait of the effect of ignoring
other sources but sampling variation. In addition, it bears implications on the
reproducibility of inferred gene-gene interaction networks reported in literature.
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1 INTRODUCTION

Gaussian graphical models are used to model (static) molecular networks.1 These models, and subsequently the net-
work, are learned from omics data. Such data are typically gene expression data that represent the activity of the entities
(ie, genes) that constitute the nodes of the network. Data used for the aforementioned purpose are usually acquired
as a side product of a clinical or an observational study. Within the context of such studies patients are characterized
molecularly once, which is mainly due to financial reasons but also a lack of awareness of the importance of replicates.
Consequently, for Gaussian graphical modeling one assumes that only sampling variation is present, ignoring other
sources of variation. Here we investigate the consequences of this assumption for the reconstruction of the molecular
network.
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A Gaussian graphical model is a multivariate normal distribution  (0p,𝛀−1) where 𝛀 = 𝚺−1 is the inverse covariance
matrix, henceforth called precision matrix. The specification of the multivariate normal in terms of the precision is due
to the fact that the off-diagonal elements of 𝛀 contain the information on the conditional (in)dependencies among the
variates. A zero off-diagonal element implies that the corresponding variates are conditionally independent, given all
other variates, while a nonzero off-diagonal element indicates that there is no such conditional independence. For more
on Gaussian graphical models refer to the monographs of Whittaker2 and Lauritzen.3

The parameter of the Gaussian graphical model is usually estimated by means of likelihood maximization. The estima-
tion requires a sample of p-dimensional, independent random vectors Yi, i= 1, … , n, from the distribution  (0p,𝛀−1).
The maximum likelihood estimator of the precision matrix𝛀 then is the inverse of the sample covariance matrix:𝛀 = S−1,
where S = 1

n

∑n
i=1 YiY⊤

i . When p>n, this estimator is not defined as S is singular. One then resorts to penalized maximum
likelihood procedures that define the estimator as the maximizer of the log-likelihood augmented with a penalty term.4,5

Both the Gaussian graphical model and the maximum likelihood estimator of its parameter assume that the variation
among the random vectors is only due to the sampling from  (0p,𝛀−1) and other sources of variation are absent. In
practice, however, such alternative sources of variation, for example, measurement error, are likely to be present in any
data as was realized almost a century ago (Shewhart,6 p. 378): “An element of chance enters into every measurement; hence
every set of measurements is inherently a sample of certain more or less unknown conditions. Even in those few instances
where we believe that the objective reality being measured is constant, the measurements of this constant are influenced by
chance or unknown causes.”

Translated to the present context, for instance, to acquire an individual’s molecular profile the preparation of the sam-
ple and the experimentation contribute substantially to the noise in the eventual observation. This dilutes the biological
signal present in the data. The presented maximum likelihood estimator of 𝛀 then does not estimate the signal precision
matrix but a convoluted version of it. The convoluted version may harbor different conditional (in)dependence relations
than the original one (examples are given in Section 2).

The direct in-house motivation behind this work stems from an omics study in which only a few samples were repli-
cated. These replications were due to doubts about the quality of some measurements (hybridizations). After closer
inspection, it turned out both hybridizations of the few replicated samples were of acceptable quality and were both
included in the dataset. Application of standard methods for the estimation of Gaussian graphical models cannot accom-
modate replicates. To apply such methods would require us to choose one replicate and ignore the other. This felt
undesirable and suboptimal. We thus proceeded to modify the aforementioned existing methodology to accommodate
replicates. In addition, we seized the opportunity to exploit the inclusion of replicates in the learning of Gaussian graphical
models. Here we present the results of this endeavour.

In this work, we investigate how ignoring other sources of variation, such as measurement error, affects the estimated
Gaussian graphical model. Hereto we consider studies with a design that is partially replicated. The replicates enable
the separation of the sampling variation from that of other causes. Data from such a study are described by a Gaussian
graphical model endowed with a “signal+noise” structure. We present its maximum likelihood estimation, in particular
high-dimensionally, including the choice of the penalty parameter. In an extensive simulation study, we then investigate
the effect of taking into account other sources of variation on the estimation of the signal precision and the related condi-
tional (in)dependence graph. The paper closes with a re-analysis of several Cancer Genome Atlas studies that repeatedly
characterized a subset of the included samples transcriptomically by different platforms. The re-analysis demonstrates
the effect of ignoring variation due to technical and experimental differences between platforms on the reproducibility of
reconstructed molecular networks.

1.1 Related work

Wainwright7 considers Gaussian graphical model estimation from corrupted data, which—in light of the Shewhart’s
quote above—could better be called realistic data. A corrupted observation is formed by the sum of a signal and a
noise random variable. Both variables are drawn independently from two different multivariate Gaussian distributions.
Wainwright7 discusses the estimation of the signal’s precision matrix, in which knowledge on the noise’s precision
matrix is assumed to be available from other means than the data at hand (ie, effectively known). This knowledge is
then used to correct the sample covariance matrix, from which—through a corrected graphical lasso procedure—the
signal’s precision matrix is estimated. Hence, replicates are not considered as a means to unravel signal and
noise.
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The MAQC/SEQC (MicroArray/SEquencing Quality Control) initiatives have used replicates to study the repro-
ducibility of findings reported by studies involving molecular high-throughput techniques.8-10 Of particular interest here,
as that issue is revisited in Section 5, is the study of Zhang et al.10 In that study, micro-array and RNA-seq platforms are
compared with respect to transcriptomic characterization of a certain cancer and clinical endpoint prediction, but not
gene-gene interaction network construction.

The reproducibility of reconstructed networks has been studied previously.11-13 Langfelder et al11 quantify the evo-
lutionary preservation of networks by comparing networks reconstructed from data of mice and man. Bellot et al12

carried out a benchmark study of network reconstruction methods comparing their reproducibility between two sub-
samples of the same experiment. Finally, Vinciotti et al13 assessed the reproducibility of networks reconstructed from
micro-array and RNA-seq platforms, concluding it is poor at the individual edge level but better at an aggregate
one. While only the latter study of Vinciotti et al13 considers a study with replicates, even there the dependency
among replicates is not addressed explicitly. Hence, even Vinciotti et al13 do not separate signal from (technical)
noise.

2 EXPERIMENT, DATA, AND MODEL

Consider an unstructured observational study with certain samples interrogated molecularly multiple times. Let Yi,ki

be a p-dimensional random variable representing the data resulting from the kith replicate, with ki = 1, … , Ki, of this
measurement on sample i= 1, … , n. We model the data from the described study by an additive model: Yi,ki = Zi + 𝜺i,ki .
In this model Zi can be thought of as the signal present in sample i, while 𝜺i,ki represents the noise in the kith replicate of
sample i. We assume the signal and error both to follow a multivariate normal distribution but with different covariance
matrices (as specified by the inverse precision matrices): Zi ∼  (0p,𝛀−1

z ) and 𝜺ik ∼  (0p,𝛀−1
𝜀 ), respectively. Additionally,

we take the signals and errors to be independent, in the sense that Zi ⟂⟂ 𝜺ik, Zi1 ⟂⟂ Zi2 for i1 ≠ i2, and 𝜺i,k1 ⟂⟂ 𝜺i,k2 for k1 ≠ k2.
Thus, Yik ∼  (0p,𝛀−1

z +𝛀−1
𝜀 ) with the following marginal and conditional (in)dependence relations: Cov(Yi1,k1 ,Yi2,k2) =

0pp for i1 ≠ i2, Cov(Yi,k1 ,Yi,k2) = 𝛀−1
z for k1 ≠ k2, Cov(Yi,k1 ,Yi,k2 | Zi) = 0pp for k1 ≠ k2, and Cov(Yi,k1 ,Yi,k2 | Zi) = 𝛀−1

𝜀 for
k1 = k2.

The above simple “signal+noise” model enables us to illustrate the effect of only taking sampling variation into
account when estimating a Gaussian graphical model. In the presence of other sources of variation, as captured by the
parameter 𝛀−1

𝜀 , one ought to infer the conditional independencies from 𝛀z. Common practice, however, bases this infer-
ence on the inverse of 𝛀−1

y = 𝛀−1
z +𝛀−1

𝜀 . This leads to false positively and false negatively inferred edges. To see this
consider a numerical example where 𝛀−1

𝜀 = I33 and

𝛀−1
z =

⎛⎜⎜⎜⎝
3 −1 2
− 1 3 −2
2 −2 4

⎞⎟⎟⎟⎠ .
Then, (𝛀z)1,2 = 0 but [(𝛀−1

z +𝛀−1
𝜀 )−1]1,2 ≠ 0. Here ignorance of all sources but sampling variation induces a false-positive

edge. A numeric example for the opposite, a false-negative edge, is also easily constructed. The difference in the condi-
tional independence graphs inferred from 𝛀y and 𝛀z can be quantified more generally. Hereto use the result of Miller14

on the inverse of a sum of two matrices to write 𝛀y in terms of 𝛀z:

𝛀y = (𝛀−1
z +𝛀−1

𝜀 )−1 = 𝛀z − (Ipp +𝛀z𝛀−1
𝜀 )−1𝛀z𝛀−1

𝜀 𝛀z.

Hence, nonzero off-diagonal elements of (Ipp +𝛀z𝛀−1
𝜀 )−1𝛀z𝛀−1

𝜀 𝛀z reveal differences in the strength of the edges of the
conditional independence graphs inferred from observation and signal precision matrices.

To write down the likelihood of the data under the specified model, the following lemma, which is a generalization
of the result presented in the appendix A of Riebler et al,15 is needed. It specifies the elements of the inverse of the joint
covariance matrix of the vector of replicates of a sample.

Lemma 1. Let Y be a multivariate normal random variable partitioned in K equally sized blocks as Y = (Y⊤
1 ,Y

⊤
2 , … ,Y⊤

K)⊤
with covariance matrix 𝛀−1

y = 1KK ⊗𝛀−1
z + IKK ⊗𝛀−1

𝜀 , with 𝛀z,𝛀𝜀 ∈ 
p
++, that is, both p× p dimensional, symmetric and

positive definite matrices. Then, its covariance matrix has determinant |𝛀𝜀|−K+1|K𝛀−1
z +𝛀−1

𝜀 | while the blocks of its inverse
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equal:

(𝛀y)k,k′ = K−1[(K𝛀−1
z +𝛀−1

𝜀 )−1 −𝛀𝜀],
(𝛀y)k,k = K−1[(K𝛀−1

z +𝛀−1
𝜀 )−1 + (K − 1)𝛀𝜀],

for k, k′ = 1, … , K and k≠ k′. Moreover, the blocks of 𝛀y satisfy: (𝛀y)k,k − (𝛀y)k,k′ = 𝛀𝜀 and (𝛀y)k,k + (K − 1)(𝛀y)k,k′ =
(K𝛀−1

z +𝛀−1
𝜀 )−1.

Proof. The determinant identity follows from the factorization:

1KK ⊗𝛀−1
z + IKK ⊗𝛀−1

𝜀 = (IKK ⊗𝛀−1
𝜀 )(1KK ⊗𝛀𝜀𝛀−1

z + IKK ⊗ Ipp),

the determinant of a Kronecker product (cf, section 16.3.e of Harville16), the specifics of the eigenvalues of 1KK , and the use
of well-known results from standard linear algebra on eigen-decompositions and determinants. Furthermore, the inverse
is verified by use of straightforward linear algebra. Finally, the relations for the blocks of the inverse are immediate from
these analytic expressions. ▪

The loglikelihood of the data can now, when invoking Lemma 1 and some algebraic manipulations, be formulated as:

n∑
i=1

log[P(Yi,1, … ,Yi,Ki)] ∝
n∑

i=1

{
(Ki − 1) log(|𝛀𝜀|) − log(|Ki𝛀−1

z +𝛀−1
𝜀 |)

− (Ki − 1)tr(𝛀𝜀S𝜀,i) − tr[(Ki𝛀−1
z +𝛀−1

𝜀 )−1Sy,i]
}
,

where S𝜀,i = (Ki − 1)−1
(∑Ki

k=1 Yi,kY⊤
i,k − K−1

i
∑Ki

k,k′=1 Yi,kY⊤
i,k′

)
and Sy,i = K−1

i
∑Ki

k,k′=1 Yi,kY⊤
i,k′ .

3 ESTIMATION

We estimate the parameters 𝛀z and 𝛀𝜀 by means of likelihood maximization. Its maximizer is found by means of the
EM algorithm,17 an iterative procedure that alternates between the so-called E- and M-steps. The procedure starts from
initial parameter estimates. In the E-step, or Expectation step, sufficient statistics for the estimation of the parameters are
obtained. In the M-step, or Maximization step, the parameter estimates are updated by means of (complete) likelihood
maximization, given the data and the acquired sufficient statistics.

The E-step produces sufficient statistics for the distribution of the unobserved Zi. As the Zi follow a multivariate
normal distribution, the sufficient statistics are the sample versions of its first two moments. But as the Zi are unob-
served, these are replaced by the expectation of these two sample moments conditional on the data using the current
parameter estimates. These expectations are found from the joint distribution of (Yi,1, … ,YKi,1,Zi). This distribution is a
zero-centered multivariate normal distribution with covariance matrix:(

1KiKi ⊗𝛀−1
z + IKiKi ⊗𝛀−1

𝜀 1Ki ⊗𝛀−1
z

1⊤KiKi
⊗𝛀−1

z 𝛀−1
z

)
=

(
IKiKi ⊗𝛀𝜀 −1Ki ⊗𝛀𝜀

− 1⊤Ki
⊗𝛀𝜀 𝛀z + Ki𝛀𝜀

)−1

.

The inverse on the right-hand side follows from the analytic expression of the inverse of a 2× 2 block matrix (theorem
8.5.11 of Harville16) in combination with Lemma 1 and the fact that its determinant equals |𝛀𝜀|−Ki |𝛀z|−1, which is imme-
diate from theorem 13.3.8 of Harville.16 Then, using theorem 2.5.1 of Anderson18 that provides an analytic expression of
the conditional distribution of a subset of variates given the others, the aforementioned conditional expectations of the
sufficient statistics are:

EZ | Y(Zi) = E(Zi |Yi,1, … ,Yi,Ki ;𝛀z,𝛀𝜀) = 𝛀−1
z (Ki𝛀−1

z +𝛀−1
𝜀 )−1

Ki∑
k=1

Yi,k,

VarZ | Y(Zi) = Var(Zi |Yi,1, … ,Yi,Ki ;𝛀z,𝛀𝜀) = (𝛀z + Ki𝛀𝜀)−1.
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In the display above the right-hand side of the first conditional moment is obtained by means of the result presented
in Lemma 1 and the second moment follows then from the Inverse Variance lemma (proposition 5.7.3 of Whittaker2).
These moments need to be evaluated for each sample i, which involves the inverse of p× p-dimensional matrices that
depends on Ki. Computationally, it is then most efficient to evaluate these moments of samples with an identical number
of replicates as a group such that redundant inversions are avoided. Finally, for use in the M-step these sufficient statistics
are evaluated by plugging in the current estimates of the precision matrices.

The M-step finds updates of the parameter estimates, given the estimates of the Zi obtained in the E-step, through
maximization of the so-called complete likelihood, which is the joint likelihood of {(Yi,1, … ,Yi,K1 ,Zi)}n

i=1. The latter
equals:

n∏
i=1

P(Yi,1, … ,Yi,Ki ,Zi) =
n∏

i=1
P(Yi,1, … ,Yi,Ki |Zi) P(Zi) =

n∏
i=1

P(Zi)
Ki∏

k=1
P(Yi,k |Zi).

Take the logarithm and obtain the complete log-likelihood:

n[log(|𝛀z|) − tr(𝛀zS̃z)] + [log(|𝛀𝜀|) − tr(𝛀𝜀S̃𝜀)]
n∑

i=1
Ki, (1)

where

S̃z =
1
n

n∑
i=1

ZiZ⊤
i and S̃𝜀 =

1∑n
i=1 Ki

n∑
i=1

Ki∑
k=1

(Yi,k − Zi)(Yi,k − Zi)⊤. (2)

For the expectation of the complete log-likelihood simply replace S̃z and S̃𝜀 by their expectations with respect to the
Zi |Yi,1, … ,Yi,Ki ;𝛀z,𝛀𝜀, which are:

EZ | Y(S̃z) =
1
n

n∑
i=1

VarZ | Y(Zi) +
1
n

n∑
i=1

EZ | Y(Zi)[EZ | Y(Zi)]⊤,

EZ | Y(S̃𝜀) =
1∑n

i=1 Ki

n∑
i=1

KiVarZ | Y(Zi) +
1∑n

i=1 Ki

n∑
i=1

Ki∑
k=1

[Yi,k − EZ | Y(Zi)][Yi,k − EZ | Y(Zi)]⊤,

respectively. Maximization of the expected log-likelihood can now be done with respect to the two parameters separately.
This yields: 𝛀̂z = [EZ | Y(S̃z)]−1 and 𝛀̂𝜀 = [EZ | Y(S̃𝜀)]−1. In this, the EZ | Y(Zi) and VarZ|Y(Zi), as obtained in the E-step, are
used for the evaluation of the updated estimates.

The EM algorithm applies the E- and M-step iteratively until convergence. Convergence is reached when the
log-likelihood does no longer improve much between subsequent iterations. Following Zhu and Melnykov,19 we oper-
ationalize this as the absolute relative change in the complete log-likelihood. Convergence of the algorithm is then
warranted by Jensens’ inequality, which implies (after some algebra) that an improvement in the complete log-likelihood
implies one in the log-likelihood.17

Omics studies, from which the gene-gene interaction network is reconstructed, are often undersampled. The resulting
high-dimensional situation requires a modification of the loss criterion. A penalty augments the log-likelihood to ensure
the existence of a unique and well-defined estimator. Here the ridge penalty, the sum of the square of the elements of
the precision matrices each with their own penalty parameter, that is, 1

2
𝜆z||𝛀z||2F + 1

2
𝜆𝜀||𝛀𝜀||2F with || ⋅ ||F the Frobenius

norm, is used. The maximizer of the thus penalized log-likelihood is found by means of a penalized EM algorithm. This
is derived as its unpenalized counterpart. Effectively, the penalization leaves the E-step unaffected and leads to a minor
modification of the M-step. In the latter now the expectation of the complete log-likelihood (1) augmented with the ridge
penalty is maximized with respect to the parameters. This can done per parameter separately and yields (cf, van Wieringen
and Peeters5), for example:

𝛀̂z(𝜆z) =

[
1
2

S̃z +
(
𝜆̃zIpp +

1
4

S̃2
z

)1∕2
]−1

,
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where 𝜆̃z = 𝜆z∕n. For that of 𝛀̂𝜀 replace 𝜆z and S̃z by their contourparts 𝜆̃𝜀 = 𝜆𝜀(
∑n

i=1 Ki)−1 and S̃𝜀. In the above the ridge
penalty may be replaced by the graphical lasso penalty: 𝜆z||𝛀z||1 + 𝜆𝜀||𝛀𝜀||1. Estimates of 𝛀z and 𝛀𝜀 are then found by a
row/column updating scheme.4

3.1 Diagonal 𝛀𝜺

We consider the simplification of the model for estimation of signal and error precision matrices in high-dimensions.
While the inclusion of replicates in the design enables the separation of sampling variation from that of other
sources, it brings about the estimation of 1

2
p(p + 1) additional parameters (compared to the estimation of the 𝛀y

from an unreplicated design). In addition, an extra penalty parameter needs to be chosen. The recovery of con-
ditional independencies is already a challenging task (especially from high-dimensional studies), but it is further
hampered by penalization. Penalization tends to shrink the precision’s off-diagonal elements more than its diag-
onal ones and thereby obstructs the deconvolution of the contributions of signal and error to the conditional
(in)dependencies.

The simplification of the model may be achieved by the adoption of assumptions on the structure of precision
matrices. This is undesirable for the signal precision matrix as it is the (conditional) relations within the signal that
are of primary interest. However, it may be acceptable to make such an assumption for 𝛀𝜀 as interest is not in the
dependencies among the elements of 𝜺i. Their independence may therefore be a reasonable simplification (which is
investigated in Sections 4 and 5.2). This independence assumption corresponds to a diagonal 𝛀𝜀 which involves only p
parameters.

Incorporation of the diagonality assumption of 𝛀𝜀 into the estimation requires only a minor modification to the
penalized EM algorithm. In the M-step the complete likelihood (1) is now maximized with respect to 𝛀𝜀 by [𝛀̂𝜀]jj =
{[S𝜀]jj}−1 for j= 1, … , p, leaving the estimate of 𝛀z unaffected. In particular, the need for penalization of 𝛀𝜀 has van-
ished as the resulting 𝛀̂𝜀 is well-defined by the independence assumption and the positivity of the estimates of its
diagonal elements. The gain in computation time bought by this diagonal 𝛀𝜀 assumption is investigated in the SM If of
Appendix S1.

We illustrate the effect of the diagonal error assumption on the reconstruction of the conditional independence graph.
For simplicity, we assume here Ki =K for all i. We then study the limiting behavior, in either n or K, of the M-step’s 𝛀̂z.
Write this inverse of this estimator as:

𝛀̂
−1
z = 𝛀−1

z (K𝛀−1
z +𝛀−1

𝜀 )−1
⎡⎢⎢⎣ 1

n

n∑
i=1

( K∑
k=1

Yi,k

)( K∑
k=1

Yi,k

)⊤⎤⎥⎥⎦ (K𝛀−1
z +𝛀−1

𝜀 )−1𝛀−1
z + (𝛀z + K𝛀𝜀)−1,

where the analytic expressions for the EZ | Y(Zi) and VarZ|Y(Zi) have been substituted. For a limiting sample size, note
that, by the law of large numbers: limn→∞n−1 ∑n

i=1(
∑K

ki=1 Yi,k1)(
∑K

ki=1 Yi,k1)
⊤ = K2 𝛀−1

z + K𝛀−1
𝜀 . Substitution of this limit

into the preceding display yields, after some linear algebraic manipulations, limn→∞ 𝛀̂
−1
z = limn→∞ EZ | Y(S̃z) = 𝛀−1

z , in
which no assumption on the error precision matrix has been made. Should we erroneously have assumed a diagonal error
precision matrix, denoted 𝛀𝜀,d and temporarily known, the limit becomes:

lim
n→∞

𝛀̂
−1
z = 𝛀−1

z + K𝛀−1
z (K𝛀−1

z +𝛀−1
𝜀,d)

−1(𝛀−1
𝜀 −𝛀−1

𝜀,d)(K𝛀−1
z +𝛀−1

𝜀,d)
−1𝛀−1

z .

The second summand characterizes the effect of the diagonal error precision matrix assumption, which vanishes when
diagonality is justified. On the other hand, with a fixed sample size n but a large number of replicates K the assumption
becomes irrelevant. Put differently, in the M-step of the algorithm limK→∞𝛀̂z = [EZ | Y(S̃z)]−1 = (n−1 ∑n

i=1 ZiZ⊤
i )

−1 as
limK→∞ EZ | Y(Zi) = Zi and limK→∞ VarZ |Y(Zi) = 0pp. Intuitively, this is evident when Zi are estimated by the aver-
age of the Yi, 1, … , Yi, K . For large K the error thus averages out. Consequently, the diagonal error assumption does
not affect the estimate of Zi, or the associated 𝛀̂z. For small n and K, simulations revealed (not shown) that the
model with a full error precision matrix performs (slightly) better in edge recovery than that with a diagonal one.
The fit of the former is generally better than the latter, unless—of course—the error precision matrix is indeed
diagonal.
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3.2 Penalty selection

We choose the penalty parameters 𝜆z and 𝜆𝜀 for the signal and error precision matrices by means of F-fold cross-validation
(with F ∈ N such that 2≤F ≤n). This procedure evaluates—for given 𝜆z and 𝜆𝜀—the performance (in some sense) of
estimated precision matrices on novel data. We consider the (𝜆z, 𝜆𝜀)-combination that yields the best performance on these
data to be optimal. We use this optimal penalty parameter combination to arrive at the final estimates of the two precision
matrices. Without novel data unavailable for performance evaluation, they are mimicked by sample splitting. This splits
the data into F equally sized groups (henceforth called splits). The splits are left-out one at the time to represent the
“novel” data. Data from the remaining splits are used to obtain the precision matrices’ estimates, while their performance
is assessed on the “novel” data from the left-out split. Each split plays the role of “novel’ data once, which results in F
performance estimates. We take the average of the F performances to be indicative of the performance of the precision
matrix estimators for the employed (𝜆z, 𝜆𝜀)-combination.

The most commonly used performance measure for the selection of the penalty parameters of penalized precision
matrix estimators is the cross-validation log-likelihood. That is, the averaged (over the splits) log-likelihood of data from
the left-out split given the estimates derived from the data of all-but-the-left-out splits. We use this criterion here too.
For practical purposes, the log-likelihood needs to be evaluated computationally efficiently, as for the cross-validated
log-likelihood requires the calculation of the log-likelihood F times for each (𝜆z, 𝜆𝜀)-combination. To achieve this effi-
ciency, let VzeDzeV⊤

ze be the eigen-decomposition of 𝛀1∕2
𝜀 𝛀−1

z 𝛀1∕2
𝜀 with the p× p-dimensional matrices Vze and diagonal

Dze that contain the eigenvectors and -values as columns and on its diagonal, respectively. We then write the log-likelihood
as:

log(|𝛀𝜀|) n∑
i=1

Ki −
n∑

i=1

p∑
j=1

log[Ki(Dze)jj + 1] − tr

[
𝛀𝜀

n∑
i=1

(Ki − 1)S𝜀,i

]
− tr

[ n∑
i=1

𝛀−1∕2
𝜀 Vze(KiDze + Ipp)−1V⊤

ze𝛀
−1∕2
𝜀 Sy,i

]
,

with Sy, i and S𝜀, i as defined at the end of Section 2. Clearly, this avoids the formation and inversion of the Ki𝛀−1
z +𝛀−1

𝜀

matrix for each different number of replicates.
A study design with replicates allows for various ways of construction the F cross-validation splits. Three strategies

may be conceived:

• Replicate-based splitting: Form a (
∑n

i=1 Ki) × p dimensional matrix with each row containing the data from a replicate.
Then, divide rows randomly over the F splits.

• Sample-based splitting: Divide the samples randomly over the F splits. A split’s data are then formed by the replicated
data of the samples that have been assigned to the split.

• Stratified splitting: Stratify for the number of replicates while randomly assigning the same number of samples to each
split. This ensures that the distribution of the number of replicates in each split is representative of the prevalence of
the Ki’s encountered in the study.

Taken at face value the above splitting strategies may all seem valid. However, the first two may yield splits that are nei-
ther representative nor balanced. In particular, the first strategy may, when F is large or the Ki are small, yield splits that are
unlikely to contain replicated observations of the same sample. In practice, Ki is usually small, rendering replicate-based
sampling a poor choice. The sample-based strategy may, when the number of replicates is unbalanced among samples,
occasionally produce splits that accidently comprise much more data than others. The resulting cross-validated perfor-
mance need then not be representative. Hence, generally, the third strategy is the safest option, which is employed in
the remainder. However, if the number of replicates is common to all samples, stratified and sample-based splitting are
equivalent. In a simulation study we compared the consequence of the sample-based and stratified splitting for the recon-
struction of the conditional independence graph, as well as the fold size. The results are presented in SM If of Appendix
S1. In this study a sample’s number of replicates equals either one or four, randomly chosen in a two-to-one ratio. Little
to no difference is observed in the reconstruction performance. This suggests that generally both splitting strategies are
viable.

The optimal (𝜆z, 𝜆𝜀)-combination, that is, the combination of penalty parameter values that yields the precision matrix
estimates with the best cross-validated performance, can—in principle—be found by a simple exhaustive grid search.
Here we use the quasi-Newton approach of Byrd et al20 available through the optim-function of R.21 Alternatively, a



8 WIERINGEN and CHEN

tailor-made gradient ascent or descent approach may be developed as outlined in the work of Feng and Simon.22 But—in
light of the limited number of penalty parameters to be optimized over—the latter is not expected to give a substantial
computational gain in comparison to the employed quasi-Newton approach and is therefore not pursued.

4 SIMULATION

We study the quantification of the signal from replicated data through simulation. In the simulation, the support of
employed signal precision matrices corresponds to archetypical topologies as a chain, block, and scale-free network. The
error precision matrices are either diagonal or have a common nonzero off-diagonal conditional covariance. Further-
more, the sample size n∈ {10, 25, 50, 75, 100}, the dimension p∈ {10, 25, 50}, and the number of replicates Ki ∈ {1, 2, 3, 4}.
Each setup is repeated a hundred times. Full simulation setup details are given in the SM Ia of Appendix S1. The afore-
mentioned quantification comprises the performance of the signal precision matrix estimator by the Frobenius loss as
well as the ability to reconstruct the signal conditional independence graph through the pAUC and AUC (partial Area
Under the Curve). The latter two statistics are calculated using an edge selection procedure based on the absolute value
of the partial correlations obtained from estimated signal precision matrix. We place a threshold on these absolute values,
and select the edges with values exceeding the threshold. The selected edges are compared to the true graph to obtain the
specificity and sensitivity. The threshold is varied over the unit interval. From the resulting (specificity, sensitivity)-pairs,
we calculate the AUC and pAUC. Using the aforementioned performance measures, we first study the effect of (the num-
ber of) replicates for various sample sizes and dimensions but also parameter choices. Results are presented as Figure 1
and those in the SM Ib of Appendix S1, which—for reasons of space and brevity—are limited to one representative com-
bination of signal and error precision matrix. The results indicate that the performance of the estimator improves in all
senses specified above. This performance gain is largest from Ki = 1 to Ki = 2 and levels off for larger number of replicates.
However, instead of characterizing each sample in duplicate, it is generally more rewarding to double the sample size as
that appears to yield a larger improvement in performance. New samples are of course easily acquired in a simulation
study but this need not necessarily be a trivial exercise in a clinical context. Finally, it should be kept in mind that these
conclusion are confined to the particulars of the parameter choices. For instance, simulations (not shown) with a smaller
signal-to-noise ratio reveal the levelling off is observed at larger Ki.

A tangible implication of two replicates (K = 2) over that of a single (K = 1) observation per individuals is an improve-
ment of the estimates. The elements of the estimated precision matrix are, on average over all employed settings and
topologies, 0.03 closer to their true value. Similarly, the off-diagonal elements of the corresponding partial correlation
matrices are, again on the same average, 0.02 closer to their true value. This improvement is largest for the larger sample
sizes, the smaller dimensions, and the larger elements of 𝛀z. It can then go up 0.1 for off-diagonal elements, and even
over 0.2 for diagonal elements (of the precision matrix).

Another takeaway of this simulation can be deduced from the scale of the y-axis of Figure 1 and its companions in
the Appendix S1. On the basis of pure chance, one would expect the pAUCs to be around 0.005. Simultaneously, the
maximum achievable pAUC is 0.1. While the results clearly exceed the chance benchmark, they are not close to their
maximum. This demonstrates the notorious difficulty of the network reconstruction problem for moderate dimensions
(p= 50). The difficulty is readily grasped when realizing that, for a p variate, one needs to estimate 1

2
p(p + 1) parameters

(counting on those related to the signal) from a small number of samples. However, the achieved pAUCs are also due to
the chosen simulation settings. Other settings, for example, less noise or stronger effect sizes, would have yielded a better
pAUC. But, for instance, we based the sample size range on practice, where our in-house studies rarely exceed a hundred
samples and often involve fewer. Nonetheless, the pAUC plots—as the simulation intends—clearly show the effect of the
inclusion of replicates, in particular in relation to the sample size and dimension. Finally, the reported pAUCs serve as a
warning that, for a small sample size and few duplicates, results are in urgent need of validation.

Secondly, we assess whether the full design needs replication, or that it is best to replicate only part of them. Hereto
we adopt the settings of the previous simulation, with the following modification. We set the total number of measure-
ment

∑n
i=1 Ki, with Ki ∈ {1, 2} for all i, equal to hundred. Under this restriction, we vary the number of samples with a

single observation and two replicates. With this study design, the above simulation is repeated. The bottom left panel
of Figure 1 shows the achieved pAUC against the number of replicated samples. At first, there is a clear gain with each
additional replicated sample, although not so obvious for the p= 50 case. This gain, however, levels off after a certain
number—the precise number depends among others on the dimension and signal-to-noise level—of replicated samples.
It even goes down when further samples are replicated. This indicates that at some point it is more worthy to include



WIERINGEN and CHEN 9

banded Ωz; uniform Ωε; p=50.

p
A

U
C

0
.0

1
0
.0

2
0
.0

3
0
.0

4

(n
=1

0,
 K

=1
)

(n
=1

0,
 K

=2
)

(n
=1

0,
 K

=3
)

(n
=1

0,
 K

=4
)

(n
=2

5,
 K

=1
)

(n
=2

5,
 K

=2
)

(n
=2

5,
 K

=3
)

(n
=2

5,
 K

=4
)

(n
=5

0,
 K

=1
)

(n
=5

0,
 K

=2
)

(n
=5

0,
 K

=3
)

(n
=5

0,
 K

=4
)

(n
=7

5,
 K

=1
)

(n
=7

5,
 K

=2
)

(n
=7

5,
 K

=3
)

(n
=7

5,
 K

=4
)

(n
=1

00
, K

=1
)

(n
=1

00
, K

=2
)

(n
=1

00
, K

=3
)

(n
=1

00
, K

=4
)

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

2
0
.0

3
0
.0

4

10 20 30 40 50

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

number of replicated samples

p
a
rt

ia
l 
A

U
C

p=10

p=25

p=50

banded Ωz; uniform Ωε; n=50; p=50.

p
a
rt

ia
l 
A

U
C

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

L 2
2 , f

ul
l Ω

ε

L 2
2 , d

ia
g 
Ω e

L 2
2 , Y

 a
ve

r.

L 1
, d

ia
g 
Ω ε

L 1
, Y

 a
ve

r.

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

F I G U R E 1 Various simulation results w.r.t. edge recovery for a banded signal precision matrix 𝛀z and a uniform error precision matrix
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∑n
i=1 Ki = 100 and all Ki ∈ {1, 2}. The right bottom panel, in which (n, p, K)= (50, 50, 2), shows boxplots of pAUCs of

five methods. Legend for the labels at its tick marks: ‘L2
2, full 𝛀𝜀’: Ridge penalized EM algorithm without the diagonal error precision matrix

assumption; “L2
2, diag 𝛀𝜀”: Ridge penalized EM algorithm with the diagonal error precision matrix assumption; “L2

2, Y average”: Ridge
penalized estimation of 𝛀y from replicate-wise averaged data (ie, {K−1

i
∑Ki

ki=1 Yi,ki
}n

i=1; “L1, diag 𝛀𝜀”: Lasso penalized EM algorithm with the
diagonal error precision matrix assumption; “L1, Y average”: Lasso penalized estimation of 𝛀y from replicate-wise averaged data (ie,
{K−1

i
∑Ki

ki=1 Yi,ki
}n

i=1 [Colour figure can be viewed at wileyonlinelibrary.com]
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biological—should they be available—rather than technical replicates. Especially, when p= 50 the gain of replication is
limited and more biological samples are to be preferred.

Thirdly, we compare in simulation the proposed method to some obvious competitors: (i) the lasso penalized EM
algorithm with a diagonal error precision matrix, (ii) the ridge precision estimator5 with replicate-wise averaged data,
and (iii) the graphical lasso precision estimator4 with replicate-wise average data. The simulation setup is as above but
with Ki = 2 throughout and n∈ {10, 25, 50}. Results are presented as boxplots in the figures of SM Ie of Appendix S1, again
limited to a representative combination of signal and error precision matrix. The main takeaways are two-fold. Firstly, the
ridge penalized methods generally outperform their lasso counterparts, in particular for the larger p, in terms of network
reconstruction. Secondly, network reconstruction by means of the ridge and lasso precision estimators from averaged
data works reasonably well (the latter only with large n and small p). That is, the support of the estimated network
based on averaged data do not substantially differ with respect to the AUC-type measures. However, the values of the
estimated signal precision matrices on the basis of averaged data can differ substantially in terms of the Frobenius norm.
A more detailed conclusion is given in SM Ie of Appendix S1. Originally, we included a lasso penalized EM algorithm
with a penalty on both precision matrices. The resulting algorithm’s convergence was slow, while the search for optimal
cross-validated penalty parameters was prohibitively slow. Moreover, the results of the other lasso penalized methods,
that is, (i) and (iii), suggest its performance will not exceed that of their ridge counterparts.

5 ILLUSTRATION

We present an illustration of the use of the presented methodology through a re-analysis of several oncogenomics studies
with replicated observations. The aim of this re-analysis is multifold: (i) to clarify the consequences of the conditional inde-
pendence graph reconstruction from an error-diluted signal, (ii) to assess the tenability of the independence assumption
among the errors as implied by a diagonal 𝛀𝜀 for the current purpose, and (iii) to elucidate the differences between
conditional independence graphs reconstructed from replicated and nonreplicated data.

The data stem from three TCGA (The Cancer Genome Atlas) studies23-25 into the molecular characterization of the
cancer of three tissue types, breast (n= 526), lung (n= 151), and ovary (n= 294). Each study interrogated a sample’s
transcriptome twice (ie, Ki = 2 for all i), by both gene expression arrays and RNA sequencing. These data have been
downloaded using the TCGA2STAT-package.26 Subsequently, each dataset has been subsetted into ten smaller ones, each
formed by restricting the original dataset to a subset of the genes. The preserved genes in each subsetted dataset map
to one of ten signaling pathways that are believed to be involved in cancer. The definitions of these pathways are taken
from KEGG27 and available in R through the KEGG.db-package28 as a set of so-called Entrez-identifiers. These identi-
fiers are matched to those of the genes present in the datasets. The latter step required conversion of the gene names to
their Entrez-identifiers for which we have used the biomaRt-package.29 The pathways’ names and their dataset-specific
dimension (ranging from p= 29 to p= 247) and sample size are tabulated in SM IIa of Appendix S1. Finally, to meet the
distributional assumptions of the presented model the data have been Gaussianized variate-wise, an operation that pre-
serves the conditional independencies among variates.30 Other assumptions are checked visually (see SM IIc of Appendix
S1), and found to be unproblematic.

We analyze the data in the following ways. We fit the presented model, with and without the diagonal assumption on
the error precision matrix, with the penalty parameter(s) chosen through stratified 10-fold cross-validation. Additionally,
we learn the platform-specific, that is, array and sequencing, precision matrices from the data using the ridge precision
matrix estimator5 that uses a penalty parameter found through 10-fold cross-validation. In the remainder of this section
we scrutinize the resulting precision matrices to meet the aims formulated at the beginning of this illustration.

5.1 The effect of the error

The deconvolution of signal and error by fitting the “signal+error” model facilitates the study of the consequence of
the error on the learning of the conditional independence graph. This study comprises (i) the quantification of the con-
tribution of signal and error to the observation, (ii) the comparison of partial correlations derived from the signal and
error-diluted observation precision matrices, and (iii) the therefrom inferred conditional independence graphs.

The fitted model enables us to investigate whether the observations are dominated by either the signal or the
error. Hereto we employ the mutual information, a generalized correlation measure, that measures the dilution of
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the signal by the addition of the error (or vice versa). Concentrating on the former, the mutual information between
Yi, k and Zi is (Yi,k;Zi) = (Yi,k) −(Yi,k |Zi), where, for example, (Yi,k) is the (differential) entropy of Yi, k. Large
values of (Yi,k;Zi) indicate that Zi contains a lot information on Yi, k, whereas (Yi,k;Zi) = 0 means the random vari-
ables are independent. Here, in the multivariate normal case, by theorem 9.4.1 of Clover and Thomas,31 (Yi,k;Zi) =
1
2

log(|𝛀−1
z +𝛀−1

𝜀 |∕|𝛀−1
𝜀 |). Similarly,(Yi,k; 𝜺i,k) = 1

2
log(|𝛀−1

z +𝛀−1
𝜀 |∕|𝛀−1

z |). For each (dataset, pathway)-combination we
evaluate these mutual informations by plug-in estimates of the precision matrices. These results are tabulated in SM IIe
of Appendix S1. These tables show that, structurally over all (dataset, pathway)-combinations, the (Yi,k;Zi) are substan-
tially larger than (Yi,k; 𝜺i,k). From this we conclude that the observations are dominated by the signal and not the error.
This conclusion is corroborated by exploratory analyses presented in SM IIe of Appendix S1. Consequently, when repli-
cates are not available, the inference of the signal-related conditional independence graph directly from the estimated
observation-related precision matrix 𝛀y is not completely in vain.

We compare the distributions of the partial correlations, the basis of the inference of the conditional independence
graph, derived from the estimated signal and observation precision matrices, 𝛀̂z and 𝛀̂y = [(𝛀̂z)−1 + (𝛀̂𝜀)−1]−1. Hereto we
generate (i) qq-plots (see SM IIf of Appendix S1) and (ii) the densities (not shown) of the differences between correspond-
ing partial correlations. The qq-plots suggest that both partial correlation distributions are reasonably similar, but with
differences appearing mainly in the tails. The densities of the partial correlations differences confirm this, as most mass
is concentrated around and close to zero. However, the different tail behavior implies that the error indeed obscures true
edges as well as introduces spurious ones in the inferred conditional independence graph.

We now quantify the effect of the error on the inferred conditional independence graph as follows. This graph is
inferred from both partial correlation matrices, that is, the ones derived from the signal and observation precision matrix
estimates 𝛀̂z and 𝛀̂y = [(𝛀̂z)−1 + (𝛀̂𝜀)−1]−1. The graph is formed by simply taking the top r, r = 1, … , 250, largest (in an
absolute sense) unique partial correlations from both matrices. The percentage of overlapping edges among the selected
edges between the two graphs is plotted against the number of selected edges (see Figure 2), again for each (dataset,
pathway)-combination. Expectedly, this percentage is unstable for small r, but settles for larger ones. On average, over data
sets and pathways, it settles around approximately 70%. Would we translate this to the inference of molecular networks
through the learning of conditional independence graphs from a single platform, it suggests that little over one in four
absent/present edges reported in the literature is either a false positive or false negative.

Finally, we illustrate the diluting effect of the error on the estimation partial correlations. Hereto the signals Zi for
i= 1, … , n are estimated by E(Zi |Yi,array,Yi,seq, 𝛀̂z, 𝛀̂𝜀) with data and estimates stemming from the apoptosis pathway
of the TCGA lung study. We then simulate observed data by Yi = Ẑi + 𝜺i with 𝜺i drawn from  (0p, 𝛀̂

−1
𝜀 ). The samples

are thus unreplicated. The signal and ‘observed’ partial correlations are then obtained from the standardized inverse
of their sample covariance matrices 1

n

∑n
i=1 ZiZ⊤

i and 1
n

∑n
i=1 YiY⊤

i , respectively. To capture the spread in the latter it is
evaluated for a hundred error draws. Boxplots of the resulting hundred “observation” partial correlations corresponding
to thirty randomly selected edges are displayed in Figure 2. Their “signal” partial correlations are plotted on top of them
as blue diamonds. This reveals that indeed some partial correlations are clearly weakened by dilution of the signal by the
error. Simultaneously, others are strengthened possibly introducing spuriously inferred edges. The partial correlations
estimated from an unreplicated error diluted signal can thus differ substantially from those obtained from the signal
itself. This bears consequences on the reconstruction of the network. To illustrate one of the implications we infer the
network from the top 100 strongest (in an absolute sense) partial corrections derived from the standardized 𝛀̂z. This
yields a network of 13 unconnected nodes and one large connected component involving 66 nodes. The large connected
component is the topological feature of interest. We assess whether it persists when the network is reconstructed from
an error diluted signal. Such a signal is created as above, from which the corresponding partial correlation matrix is
estimated, and in turn a network reconstructed by selection of its top 100 strongest edges. This exercise is repeated a
hundred times. The hundred networks derived from the error diluted signal all exhibit a large connected component. In
over 85% of these networks the size of this component involves 50 or more nodes. Hence, without replicated samples the
prominent network feature is generally preserved, but it is also partially obscured due to error dilution.

5.2 The diagonal 𝛀𝜺 assumption

The assumption of a diagonal 𝛀𝜀 discussed in Section 3.1 is evaluated. Previously, we proposed the assumption for com-
putational reasons, in particular when the penalty parameter is chosen via cross-validation. Here we study its effect on
the reconstruction of the conditional independence graph in real-data.
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F I G U R E 2 Left panel: the percentage of overlapping edges (y-axis) between the conditional independence graphs formed by selecting
the top r (x-axis) strongest (in an absolute sense) partial correlations from the standardized signal precision matrix 𝛀̂z and the “observation”
precision matrix 𝛀̂y = [(𝛀̂z)−1 + (𝛀̂𝜀)−1]−1. Each line represents a different pathway and connects the percentages of overlapping edges found
for a top of varying sizes r, r = 1, … , 250. Right panel: boxplots of partial correlations of randomly selected edges evaluated from a fixed
signal Zi diluted with varying errors 𝜺i. For reference the partial correlations from the undiluted signals are added as blue diamonds [Colour
figure can be viewed at wileyonlinelibrary.com]

For starters we compare the models with a full and diagonal 𝛀𝜀 by means of the Aikake’s Information Criterion (AIC).
The AIC balances the model’s fit with its parsimony. For the model with a full 𝛀𝜀 the AIC is:

AIC = 2p(p + 1) − 2
n∑

i=1
log[P(Yi,1, … ,Yi,Ki ; 𝛀̂z, 𝛀̂𝜀)],

that is, twice the number of model parameter minus twice the log-likelihood evaluated at the estimated model parameters
under the full𝛀𝜀 assumption. For the model with a diagonal𝛀𝜀 the first summand on the right-hand side of the preceding
display is replaced by p(p+ 1)+ 2p and the corresponding estimators are used in the log-likelihood. These estimated AICs
are reported in SM IId of Appendix S1. They reveal that the AICs of the model with a full 𝛀𝜀 are better (ie, smaller) than
the model with a diagonal 𝛀𝜀. Hence, the improvement of the description of the data by the more elaborated model over
the simpler one outweighs the use of 1

2
p(p − 1) additional parameters by the former. This suggests the full model is to be

preferred when used for the reconstruction of the conditional independence graph.
The model with a diagonal 𝛀𝜀 may not be preferred on the basis of the AIC, it could still be a good basis for the recon-

struction of the conditional independence graph. As in Section 5.1 qq-plots of the partial correlations, derived from the
𝛀z estimate under both error assumptions, are drawn for every (data set, pathway)-combination (see SM IIf of Appendix
S1). These plots reveal little difference in distribution of these partial correlations. Additionally, the densities of the differ-
ences of corresponding partial correlations of both models are plotted (not shown). Generally, these densities are tightly
concentrated around zero, suggesting the estimate of 𝛀z under the assumption of a diagonal 𝛀𝜀 may still be a good basis
for the reconstruction of the conditional independence graph. This is quantified, as in Section 5.1, by the percentage of
overlapping edges between the conditional independence graphs reconstructed from both 𝛀z estimates, and selecting
only the top r, r = 1, … , 250, largest (in an absolute sense) partial correlations. For each (dataset, pathway)-combination
we plot these percentages against the number of selected edges r. In all cases the percentage of overlapping edges between
the two reconstructed networks exceeds the 85% and is on average around 90%. Hence, for initial screening purposes a
simpler model may suffice, but the computational efficiency gain comes at a cost.

http://wileyonlinelibrary.com
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5.3 The platform differences

In the spirit of the MAQC we compare the reconstruction of the CIGs from individual—but also joint—platform data
(all plots are deferred to SM IIf of Appendix S1). In the remainder we refer to these graphs as the “microarray CIG,” the
“RNA-seq CIG” and the “joint CIG.” The percentage of overlap among the top r edges of the micro-array and RNA-seq
CIGs varies roughly between 35% and 55% (cf, the SM IIf of Appendix S1) over pathways and datasets. This suggests that
roughly only between a third and a half of the edges reported in the literature will reproduce in subsequent studies when
using a different platform.

In our comparison of the individual platforms’ CIG to the joint one, we assume that (a) the variation in the data only
comprises sampling variation and that due to the use of the two different platforms and (b) these variation components
can be estimated adequately and without (!) too much error by the proposed penalized EM algorithm in combination with
a cross-validated penalty parameter. The percentage of overlap in the top r edges of the joint and either the micro-array or
RNA-seq CIGs fluctuates around approximately 60% and 65%, respectively, over pathways and datasets. The outlying per-
centages for the MAPK pathway in the ovarian data are due to extremely large cross-validated penalties in both platform
specific precision matrix estimates. The overlap of the “joint CIG” with the RNA-seq one is systematically a little larger
with that of the micro-array platform. Irrespectively of this minor difference, these percentages suggest that—although
unknown which—65% of the gene-gene interactions reported in the literature are correctly identified, should the afore-
mentioned assumptions be tenable. This 65% is slightly smaller but otherwise in line with the approximately 70% found in
Section 5.1, when investigating the effect of the error. The former percentage can be dissected into the overlap percentages
among the top r edges between:

• the joint CIG and the intersection of the microarray and RNA-seq CIGs. This overlap percentage ranges from 35% to
55%, depending on pathway and data set. In particular, the plots also indicate that, if an edge is in the overlap of the
platform specific CIGs, it is most likely to be in the joint CIG.

• the joint and microarray CIGs that are not present in the RNA-seq CIG. This ranges more or less from 15% to 20%,
while vice versa the joint and RNA-seq CIGs that are not present in the micro-array CIG fluctuate between 20% and
25%. The latter’s larger overlap is in line with the overall larger overlap between these two CIGs. Irrespectively, this
indicates that indeed there are platform specific edges.

• the joint CIG that are not present in either the microarray or RNA-seq CIGs. It ranges from 5% to 15% (and sometimes as
high as 25%) over the pathways and datasets. This reveals the amount of obscured edges by use of a particular platform.

These percentages should be related to the probability of an edge common to two independently reconstructed net-
works with the same number of nodes p and an equal number of selected edges r. For p= 50 and r = 250 is approximately
4.16% (and lower for smaller r or larger p). Hence, as the observed percentage easily exceeds this reference percentage of
4.16%, there is definitely shared information between the platform-specific CIGs. Although not perfect, it represents the
cohesion of the pathways’ gene expression data.

Finally, we draw up a more specific inventory of the overlap between the joint, microarry and RNA-seq CIGs. Hereto
we identify, using the TCGA lung cancer data, for all pathways the 100 strongest edges from the corresponding partial
correlation matrices. For each pathway we evaluate the overlap between the all combinations of the resulting CIGs, shown
in Figure 3. Would all three CIGS be identical, a bar is solid brown and reaches up to 100 on the x-axis. Similarly, without
overlap among the CIGs, a bar comprises of three equally sized blocks, coloured red, yellow and blue, while reaching up
to 300. In Figure 3 the bars reach—on average—to approximately 175, which amounts to a reasonable amount of overlap.
Unsurprisingly, the joint CIGs share most with both other CIGs, individually and with their intersection. However, there
are also approximately 15 edges present only in the joint CIG, which—if correct—are missed without replication. On a
similar note, a much larger number of edges is specific to either the RNA-seq or the micro-array CIGs. Hence, using a
single platform without replication, one clearly identifies a substantial amount of edges that are unlikely to reproduce.

6 CONCLUSION

Assuming a simple “signal+noise” model we showed in Section 2 the possible consequences of ignoring variation due to
other sources than sampling for the reconstruction of the cohesion among the variates of a Gaussian random variable:
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F I G U R E 3 On the right, a
horizontal bar plot of—per
pathway—the number of
overlapping edges between the
top 100 strongest edges of the
CIGs reconstructed from the
RNA-seq, micro-array and the
joint data. The left panel
represents the accompanying
color legend via a venn diagram
[Colour figure can be viewed at
wileyonlinelibrary.com]

conditional dependencies may be obscured and spurious ones introduced. We pointed out that this may be overcome
when observations have been replicated as different sources of variation can be separated. We presented methodology for
the estimation of the parameters associated with these sources and that harbor the sought conditional (in)dependencies.
Simulations showed that most is gained from duplication but that, for example, triplicated observations add little. It
also revealed that, when pragmatically using replicate-wise averaged data instead of the more complicated proposed
“signal+noise” model-based approach, the support of the signal precision matrix can be reconstructed quite well but the
corresponding estimated values of the precision matrix can be inaccurate. Finally, through an extensive re-analysis of
data from oncogenomics studies with replicated observations the effect of omission of replicates but also the gain of their
inclusion has been tangibly illustrated. In particular, it provides insight in the reproducibility of published gene-gene
interaction networks, which indicates that care is to be taken with the validity of these networks.

A further note of caution is needed. Sofar false-positive and -negative edges of the reconstructed conditional indepen-
dence graph have only been attributed to the presence of the variation introduced by the use of different platforms. On
one hand, this ignores the uncertainty in the estimation due to the use of a sample of finite size that introduces falsely
inferred absent and present edges. On the other, the focus is—due to the design of the employed TCGA studies—on the
error quantifiable from technical replicates. This ignores the fact that mRNA levels may vary considerably over the day.
This biological within-sample variation cannot be quantified from the used TCGA studies. That would require studies
with a longitudinal setup in which samples are characterized at multiple instances. And for its analysis different statistical
methodology is needed. Both are the subject of follow-up research.

ACKNOWLEDGEMENTS
This project has received funding from the Euratom research and training programme 2014–2018 under grant
agreement No 755523.

DATA AVAILABILITY
The data that support the findings of this study are openly available in at the TCGA portal, here accessed through the
R-package TCGA2STAT. The presented methodology has been implemented in the R statistical computing language21

and is incorporated in theporridge-package32 available via CRAN repository (https://cran.r-project.org/web/packages/
porridge).

ORCID
Wessel N. van Wieringen https://orcid.org/0000-0002-5100-9123

REFERENCES
1. Dobra A, Hans C, Jones B, Nevins JR, Yao G, West M. Sparse graphical models for exploring gene expression data. J Multivar Anal.

2004;90(1):196-212.
2. Whittaker J. Graphical Models in Applied Multivariate Statistics. New York, NY: John Wiley; 1990.
3. Lauritzen SL. Graphical Models. Oxford, UK: Oxford University Press; 1996.

http://wileyonlinelibrary.com
https://cran.r-project.org/web/packages/porridge
https://cran.r-project.org/web/packages/porridge
https://orcid.org/0000-0002-5100-9123
https://orcid.org/0000-0002-5100-9123


WIERINGEN and CHEN 15

4. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432-441.
5. van Wieringen WN, Peeters CFW. Ridge estimation of the inverse covariance matrix from high-dimensional data. Comput Stat Data Anal.

2016;103:284-303.
6. Shewhart WA. Economic Control of Quality of Manufactured Product. London: Macmillan And Co Ltd; 1931.
7. Wainwright MJ. High-Dimensional Statistics: A Non-asymptotic Viewpoint. Cambridge, MA: Cambridge University Press; 2019.
8. MAQC Consortium. The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression

measurements. Nat Biotechnol. 2006;24(9):1151-1161.
9. MAQC Consortium. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of

microarray-based predictive models. Nat Biotechnol. 2010;28(8):827-838.
10. Zhang W, Yu Y, Falk Hertwig F, et al. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome

Biol. 2015;16:133.
11. Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. 2011;7(1):e1001057.
12. Bellot P, Olsen C, Salembier P, Oliveras-Vergés A, Meyer PE. NetBenchmark: a bioconductor package for reproducible benchmarks of

gene regulatory network inference. BMC Bioinform. 2015;16(1):312.
13. Vinciotti V, Wit EC, Jansen R, et al. Consistency of biological networks inferred from microarray and sequencing data. BMC Bioinform.

2016;17(1):254.
14. Miller KS. On the inverse of the sum of matrices. Math Mag. 1981;54(2):67-72.
15. Riebler A, Held L, Rue H. Estimation and extrapolation of time trends in registry data-borrowing strength from related populations. Ann

Appl Stat. 2012;6(1):304-333.
16. Harville DA. Matrix Algebra from a Statistician’s Perspective. New York, NY: Springer; 2008.
17. Titterington DM, Smith AF, Makov UE. Statistical Analysis of Finite Mixture Distributions. New York, NY: John Wiley; 1985.
18. Anderson TW. An Introduction to Multivariate Statistical Analysis. 3rd ed. New York, NY: John Wiley; 2003.
19. Zhu Z, Melnykov V. ManlyMix: an R package for manly mixture modeling. R J. 2017;9(2):176-197.
20. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16:1190-1208.
21. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018

https://www.R-project.org/.
22. Feng J, Simon N. Gradient-based regularization parameter selection for problems with nonsmooth penalty functions. J Comput Graph

Stat. 2018;27(2):426-435.
23. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609-615.
24. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature.

2012;489:519-525.
25. Cancer Genome Atlas Research Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61-70.
26. Wan YW, Allen GI, Anderson ML, Liu Z. TCGA2STAT: simple TCGA data access for integrated statistical analysis in R. R package version

1.2; 2015. https://CRAN.R-project.org/package=TCGA2STAT.
27. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res.

1999;27(1):28-34.
28. Carlson M. KEGG.db: a set of annotation maps for KEGG. R package version 3.2.3; 2016. https://www.bioconductor.org/packages/release/

data/annotation/html/KEGG.db.html.
29. Durinck S, Spellman PT, Birney W, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package

biomaRt. R package version 2.34.2. Nat Protoc. 2009;4:1184-1191. https://bioconductor.org/packages/release/bioc/html/biomaRt.html.
30. Liu H, Lafferty J, Wasserman L. The nonparanormal: semiparametric estimation of high dimensional undirected graphs. J Mach Learn

Res. 2009;10(Oct):2295-2328.
31. Clover TM, Thomas JA. Elements of Information Theory. New York, NY: John Wiley; 2006.
32. van Wieringen WN. Porridge: ridge-type estimation of a potpourri of models. R package version 0.01; 2019. https://CRAN.R-project.org/

package=porridge.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: van Wieringen WN, Chen Y. Penalized estimation of the Gaussian graphical model
from data with replicates. Statistics in Medicine. 2021;1–15. https://doi.org/10.1002/sim.9028

https://www.r-project.org/
https://cran.r-project.org/package=TCGA2STAT
https://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html
https://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://cran.r-project.org/package=porridge
https://cran.r-project.org/package=porridge
https://doi.org/10.1002/sim.9028

